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LETTER TO THE EDITOR 

Elastic property of the self-avoiding random walk 
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Department of Chemistry, Brandeis University, Waltham, MA 02254, USA 

Received 16 June 1989 

Abstract. We have calculated the end-to-end elastic susceptibility for the bond-bending 
model on the self-avoiding random walk. Our numerical result shows clearly that the 
central force term is irrelevant when the bond-bending term is present. Our result also 
indicates that when the elastic constant of the bond-bending term is set equal to infinity 
the elastic network is governed by the conductivity exponent of the random resistor network. 

The elastic network has been the subject of recent studies [l-61. The simplest model 
is the central force model [l], where each bond in the cluster is associated with a 
spring of spring constant kcen. Since its rigidity threshold peen is higher than the 
percolation threshold, a more realistic model has been investigated, i.e. the bond- 
bending model [2]. This model can be defined as the central force model plus a 
bond-bending term where each nearest-neighbour pair of bonds is associated with 
another spring of spring constant kbb. For the bond-bending model, the scaling analysis 
of Kantor and Webman [2] gives the lower bound for the bulk modulus exponent f 
which is dv + 1 = 3.67 in two dimensions, where v is the correlation length exponent. 
The early numerical simulations by Feng et a1 [6] and Bergman [7] yield the estimates 
f =  3.3 f 0.5 and f =  3.5 f 0.2 respectively. The real space renormalisation group study 
[SI givesf= 3.5-3.75. The most recent and the most accurate simulation is by Zabolitsky 
et al [9] and gives f =  3.96f0.04 in two dimensions. This leads to the conjecture [6, 
10-121 

f = 2 v + t  (1) 

where t is the conductivity exponent for the random resistor network. This agrees 
with f = 3.96f0.04 very well if we take v = 413 and t = 1.30t. In the resistor network, 
one can define resistive susceptibility xre [ 141 as 

where R, is the resistance between site i and j ,  [ a],, denotes the configurational average, 
and cPre is the critical exponent which describes the way in which two-point resistance 
scales with the distance. From a node-link picture [ 151 or a scaling analysis [ 141, we 
have the relation 

t = ( d  -2) Y + d,, . (3) 

I' Present address: Department of Physics, University of Toronto, Toronto, Canada. 
I' Several authors [13] all give r = 1.30 in two dimensions. 
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Similarily, we expect that f =  ( d  -2)v+ +el for the elastic network, where +el is a 
crossover exponent. From a node-link picture [ 161, +el is identified to be the crossover 
exponent describing the way that two-point elastic susceptibility xel scales with the 
distance. Here xel is defined as 

where xi'  is the effective elastic constant between site i and j .  
One can define another crossover exponent & as [4]: 

r 1 

where Xb,b '=  O/r is the splay elastic susceptibility [4], b is the bond index, 6 is the 
angular displacement between bonds b and b', and r is the torque on bonds b and b' 
needed to maintain equilibrium. 

The dimensional argument suggests that +el = 2 v + +,, . This agrees with the mean- 
field value [ 161 $el = 2 and & = 1. A series-expansion calculation [ 171 up to pI3  of 
+,, on a honeycomb lattice, which should give a result of +el around 3.96 if we assume 
equations ( 1 )  and (3) to be exact, does not agree with numerical simulations presumably 
because the series is not long enough to extrapolate the exponent. The series calculation 
[ 181 on the lattice animal, however, supports +el = 2 v  + &. It has been shown [ 181 
that &, = c$re for the lattice animal. For percolation, it has also been shown [19] 
that dSr = +re.  In this letter, in order to study the scaling of the elastic susceptibility 
as we vary kbb and k,,,, we have calculated the end-to-end elastic susceptibility, 
as defined in (4), of the self-avoiding walk on a square lattice xsaw. We assume 
that each step of the walk is represented by a bond. For a chain of length n, we 
have [2]: 

X s a w ( n )  = S ' ( n ) / k b b + L L ( n ) / k c e n  (6) 

where 

S 2 ( n ) =  i [ ( R X X )  - ( R i - R J j 2  
i = l  

and 

L(n)= i [ P . ( R i - - R i , , ) ] 2  
i = l  

(7)  

Here Ri is the position vector of site i and P= (RI -R , , ) /JR ,  -R,I. Therefore, we can 
obtain xSaw as a function of k b b  and kc,,. The series we obtain is: 

Xsaw =c C ( n ) X s a w ( n ) K "  = X t / k b b + X ~ / k c e n  (9) 

where C (  n )  = n - ' = w A  is the number of the self-avoiding walks, with Osaw = 43/32 [20] 
and A-' = 2.6381 2k0.0002 [21] on the square lattice. For S'(n)  and L(n), we assume 
that they obey the following scaling forms: 
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Table 1. The coefficients of the series on the square lattice. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

0.00 
4.00 

35.20 
176.00 
858.87 

3 600.62 
14 558.13 
54 325.81 

198 880.90 
693 229.94 

2385 497.48 
7942 414.17 

26 202 969.61 
84420461.12 

270 133 898.69 
849 039 685.23 

2654 560 821.62 
8 183 952 957.33 

25 126 058 026.74 
76 274 713 761.93 

230 765 610 361.48 

4.00 
8.00 

44.80 
179.20 
654.66 

2 196.25 
7 209.08 

22 639.17 
70 413.40 

213 149.76 
641 656.91 

1896 912.01 
5 587 306.25 

16 244 077.99 
47 108 059.47 

135 269 106.90 
387 722 652.48 

1 102 718 656.00 
3 132 043 249.68 
8 840 184 979.61 

24 925 873 135.1 1 

where & and &,, are two critical exponents and yn denotes all the n-step self-avoiding 
walks. The series of the splay elastic susceptibility is readily shown to be the same as 
,y2 for a chain, from which we have c # J ~ ~  = We have calculated xsaw on a square 
lattice up to p2' .  The calculation was done on a Masscomp 5700 (which is about three 
times slower than a VAX 8650) and took about 18 h of CPU time. The series coefficients 
are listed in table 1. We analysed the series using a Pad6 approximant and a differential 
Pad6 approximant [22]. We obtained C$b = 2.493 f 0.008 and = 0.992 f 0.010. Since 
4re = 1 for the self-avoiding walk, our result suggests that +b = 2v + q!+, and &,, = & 
with v = 3/4 [20,23]. From this analysis, we clearly see that in (9) the central force 
term is irrelevant when the bond-bending term is present. This is the crucial argument 
in order to show qbSr = 4re for percolation in two dimensions. We also notice that in 
the limit that kbb goes to infinity, the elastic network is governed by the conductivity 
exponent of the resistor network. A series expansion calculation [ 191 for percolation 
on a honeycomb lattice has also indicated this point. We do not yet know how to 
map the bond-bending model in which kbb is set equal to infinity onto the resistor 
network. 

In summary, we have calculated the end-to-end elastic susceptibility for the self- 
avoiding walk. Our numerical result confirms that the central force term is irrelevant 
when the bond-bending term is present. Our result supports 4,, = 2v+ &,, &= &,, 
and in turn f =  2v + t. Our result also indicates that in the limit the kbb goes to infinity, 
the elastic network is governed by the conductivity exponent of the resistor 
network. 

I would like to thank Dr R Kozack for a careful reading of this manuscript. I also 
thank the NIH for support under grant no 4-60357. 
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